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Background & Motivation

All the methods for causal inference can be viewed as missing data
imputation methods, where some are more explicit than others. –
Imbens and Rubin (2015).

▶ Matching method explicity impute the missing counterfactual
of trated Xi by control Xj(i).

▶ Difference-in-difference (DID) method implicitly impute the
missing counterfactual by differencing the treated and controls
before and after the treatment.

▶ Novel synthetic control method (SCM) explicitly impute the
missing counterfactual of Yit with a weighted average of
control units, without extrapolation.

Ŷit =
J∑

j=1

WjYjt



Impute Counterfactual by Modeling the DGPs
▶ After transforming the causal inference problem into a missing

data imputation problem, it is natural to think about
modeling the data generating process (DGPs).

▶ Factor model is popular for its flexibility and sparsity in DGPs
modeling. (Bai (2003), Stock and Watson (2002), etc.)

A brief history of using the factor model for causal inference:

1. Pure factor models. Hsiao et al. (2012) appear to be the first
to use factor models for causal inference.

yit = λiFt + ϵit

2. Interactive fixed effects model. Xu (2016) use factor model
plus regression terms.

yit = λiFt + Xitβ + ϵit

▶ Recent advance in asset pricing using IPCA for stock return
prediction. (Kelly et al. (2020))



Set up

▶ Yit is the observed outcome for unit i = 1, 2, · · · ,N at time
t = 1, · · · ,T .

▶ Total number of observed units is N = Ntreat + Nctrl , for Nctrl

number of units in the control group C and Ntreat units in the
treated group T .

▶ Each unit is observed over T = Tpre + Tpost periods.

Assumption

Functional form:

Yit = Dit ◦ δit + ΛitF
′
t + µit

Λit = XitΓ + Hit



Set up

▶ where Xit = [x1it , · · · , xLit ] is a vector of observed covariates.

▶ Ft = [f 1t , · · · , f Kt ] is a vector of unobserved time-varying
factors.

▶ Λit = [λ1
it , · · · , λK

it ] is a vector of unobserved factor loadings
instrumented by covariates Xit .

▶ Γ is a L× K transformation matrix, mapping L covariates into
K latent factor loadings.

Y 1
it = δit + XitΓtreatF

′
t + ϵit if i ∈ T & t > Tpre

Y 0
it = XitΓtreatF

′
t + ϵit if i ∈ T & t <= Tpre

Y 0
it = XitΓctrlF

′
t + ϵit if i ∈ C.



Treatment Assignment

▶ To simplify the estimation, we focus on the block assignment
scenario where all the treated units are treated at the same
time (can be relaxed) and the treatment once turned on can
not be turned off.

Figure: Block assignment scenario



Estimand

▶ We use Neyman (1932) and Rubin (2003) potential outcome
framework to specify the potential outcome for treated and
control units.

▶ Under Nemany’s potential outcome framework, our estimand
ATT can be expressed as:

ÂTT t =
1

Ntreat

∑
i∈T

(
Y 1
it − Ŷ 0

it

)
=

1

Ntreat

∑
i∈T

δ̂it .



Advantages of the CSC-IPCA Method

1. It inherits the ability of PCA to effectively handle
high-dimensional data.
▶ The mapping matrix Γ conducts a dimensional reduction

process, making it easier to handle high-dimensional datasets.
▶ Prediction information from covariates is more effectively

handled.

2. It generates time-varying factor loadings which have better
economic interpretation.
▶ Instrumented factor loadings Λit inherit time-varying

properties, making them more realistic in practice.

3. It enhances the value extracted from numerous covariates,
and dynamic factor loadings can help to better estimate
common factors.
▶ Reduced bias when unobserved covariates are present,

compared to other similar methods.



Estimation

To combine the functional form we get the following structure
component:

Yit = (XitΓ)F
′
t + ϵit , ϵit = µit + HitF

′
t .

CSC-IPCA method is estimated by minimizing the sum of squared
residuals of the following objective function:

argmin
Γ,Ft

∑
i

∑
t

(
Yit − (XitΓ)F

′
t

) (
Yit − (XitΓ)F

′
t

)′
.

▶ The optimization, as defined in the equation above, is
quadratic with respect to either Γ or f t , when the other is
held constant.

▶ We can use alternating least squares (ALS) method for the
numerical solution of this optimization problem.



Estimation
Step 1: Estimate the common factors F̂t and the mapping matrix
Γ̂ctrl with an ALS algorithm, based exclusively on data from the
control group for the whole time period.

(Γ̂ctrl , F̂t) = argmin
Γ,Ft

∑
i∈C

∑
t≤T

(
Yit − (XitΓ)F

′
t

) (
Yit − (XitΓ)F

′
t

)′
.

With a fixed Γ, the solutions for f t are t-separable and can be
obtained via cross-sectional OLS for each t:

f̂ t(Γ) = (Γ′X ′
tXtΓ)

−1Γ′X ′
tYt .

Conversely, with known f t , the optimal Γ (vectorized as
γ = vect(Γ)) is derived through pooled panel OLS of yit against
LK regressors, x it ⊗ f t :

γ̂ =

∑
i ,t

(x ′
it ⊗ f t)(x it ⊗ f

′
t)

−1∑
i ,t

(x ′
it ⊗ f t)yit

 .



Estimation

Step 2: Estimate the mapping matrix Γ̂treat for treated unit i at
time t, employing the previously estimated time-varying factors F̂t
and the observed covariates Xit , using only pretreatment data from
the treated units.

Γ̂treat = argmin
Γ

∑
i∈T

∑
t≤Tpre

(
Yit − (XitΓ)F̂

′
t

)(
Yit − (XitΓ)F̂

′
t

)′
.

The Γtreat is estimated through:

γ̂ =

∑
i ,t

(x ′
it ⊗ f̂ t)(x it ⊗ f̂

′
t)

−1∑
i ,t

(x ′
it ⊗ f̂ t)yit

 .

for i ∈ T ,T <= Tpre .



Estimation

▶ The estimation of f t and Γ is not deterministic.

▶ We can find any arbitrary rotation matrix R, such that
x itΓRR

−1f
′
t yields the same structural component.

▶ We put specific constraints on the mapping matrix
Γnorm = ΓtreatR and factor f norm = R−1f t for identification.



Estimation

Step 3: The third step includes normalizing the estimated
mapping matrix Γ̂treat and F̂t by a set of constraints:

Γnorm = Γ̂treatR,

Fnorm = R−1F̂t ,

s.t.Γ′normΓnorm = IK , FnormF
′
norm/T = Diagonal.

1. Cholesky decomposition to get a upper triangular matrix
R1 = cholesky(Γ′Γ),

2. Singular value decomposition on R1f tf
′
tR

′
1 to get R2 = U

where UΣV ′ = svd(R1f tf
′
tR

′
1).

3. Finally, the rotation matrix R is given by: R = R−1
1 R2.



Estimation

Step 4: The final step involves imputing the counterfactual
outcome Ŷ 0

it for treated unit i at time t by substituting the

estimated mapping matrix Γ̂norm and the time varying factors F̂norm
into the following equation:

Ŷit(0) = (Xit Γ̂norm)F̂
′
norm, ∀i ∈ T , & Tpre < t ≤ T .

The estimated average treatment effect for treated is:

ÂTT t =
1

Ntreat

∑
i∈T

(
Y 1
it − Ŷ 0

it

)
=

1

Ntreat

∑
i∈T

δ̂it .



Hyperparameter tuning



Inference

We use conformal inference (Chernozhukov et al. (2021)) to
construct the confidence interval.

1. We postulate a sharp null hypothesis, H0 : θit = θ0it . Under
this null hypothesis, we adjust the outcome for treated units
post-treatment as Ỹit = Yit − θit .

2. Following the estimation procedure to estimate the
time-varying factor Ft with only control data as before, and
update the Γ for the newly adjusted treated units with the
entire set of treated units.

3. Estimate the treatment effect and compute the residuals for
the treated units in the post treatment period. The test
statistic showing how large the residual is under the null:

S(µ̂) =

 1√
Tpost

∑
t>Tpre

|µ̂|q




Inference

4. We employ q = 1 for the permanent intervention effect as
designed in our study.

5. Block permute the residuals and calculate the test statistic in
each permutation. The P-value is defined as:

p̂ = 1− F̂ (S(û)), where F̂ (x) =
1

|Π|
∑
π∈Π

1{S(ûπ) < x}.

6. Repeat the above procedures with different nulls to get
different P-values and construct confidence intervals at
different significance levels.



Simulation
We use the following DGPs to simulate the data:

Yit = Diδ
′
t + Xitβ

′ + (XitΓ)F
′
t + αi + ξt + ϵit .

▶ L = 10 and K = 3.
▶ Xit = [x1it , . . . , x

L
it ] denotes a vector of L× 1 time-varying

covariates, which follows a VAR(1) process.
Xit = µi + AiXi ,t−1 + νit , where Ai is a L× L
variance-covariance matrix.

▶ Ft = [f 1t , . . . , f
3
t ] denotes the vector of time-varying common

factors, adhering to a similar VAR(1) process.
▶ The coefficient vector β = [β1, . . . , βL] associated with the

covariates is drawn uniformly from (0, 1).
▶ Γ, the L× K mapping matrix for the factor loadings, is drawn

uniformly from (−0.1, 0.1).
▶ The treatment indicator Dit is binary. The heterogeneous

treatment effect is modeled as δit = δ̄it + eit .
δ̄t = [0, · · · , 0, 1, 2, . . . ,Tpost ] represents a time-varying
treatment effect.



Simulation
▶ There is a possibility that treated units are not in the convex

hull formulated by controls.
▶ From the simple event study plot, the parallel trend

assumption is not satisfied.



An example
▶ The upper panel shows the average synthetic control’s

outcome perfectly overlaps with the actual average treated
outcome before the treatment.

▶ The lower panel shows the average treatment effect before
and after treatment with a 90% confidence interval.



Bias comparison
▶ When all covariates are observed, both CSC-IPCA and

CSC-IFE demonstrate unbiasedness and effectively estimate
the true ATT.

▶ SCM exhibits an upward bias for the poor pre-treatment fit.

▶ As the number of unobserved covariates increases, both
CSC-IPCA and CSC-IFE lose efficiency, but the CSC-IPCA
estimator remains less unbiased than CSC-IPCA estimator.



Finite sample property
▶ The bias, RMSE, and STD are estimated based on 1000

simulations.

▶ Ntreat = 5,Tpost = 5, L = 10. We vary the number of control
units Nctrl , pre-treatment period Tpre , and the proportion of
observed covariates α.

▶ The convergence rate of the CSC-IPCA estimator is the
smaller one of Op

(√
Nctrl

)
and Op

(√
NtreatTpre

)
.



Identification assumptions

Assumption

Assumption for consistency:

1. Covariate orthogonality: E [x′itϵit ] = 0L×1,

2. The following moments exist: E∥f tf
′
t∥2, E∥x ′

itϵit∥2,
E∥x ′

itx it∥2, E
[
∥x ′

itx it∥2∥f tf
′
t∥2

]
,

3. The parameter space Ψ of Γ is compact and away from rank
deficient: det Γ′Γ > ϵ for some ϵ > 0,

4. Almost surely, x it is bounded, and define Ωxx
t := E [x ′

itx it ],
then almost surely, Ωxx

t > ϵ for some ϵ > 0.



Identification assumption

Assumption

Assumptions for asymptotic normality:

1. As N,T → ∞, 1√
NT

∑
i ,t vect

(
x ′
itϵitf

′
t

) d−→ Normal
(
0,Ωxϵf

)
,

2. As N → ∞, 1√
N

∑
i vect (X

′
i ϵi )

d−→ Normal (0,Ωxϵ) for ∀t,

3. As N,T → ∞, 1√
T

∑
t vect

(
f tf

′
t − E[f tf

′
t ]
) d−→

Normal
(
0,Ωf

)
.

4. Bounded dependence: 1
NT

∑
i ,j ,t,s ∥τij ,ts∥ < ∞, where

τij ,ts := E
[
x ′
itϵitϵ

′
jsx js

]
5. Constant second moments of the covariates: Ωxx

t = E [XtX
′
t ]

is constant across time periods.



Formal result

we can formulate a target function for Γ as follows:

G (Γ) =
1

2NT

∑
i ,t

(
yit − x itΓf̂ t

)2
.

The Hessian matrix H(Γ) is defined as the second derivative of the

target function G (Γ) with respect to Γ: H(Γ) = ∂2G(Γ)
∂Γ∂Γ′ .

To satisfy the normalization criteria, we define the following
identification function:

I (Γ) :=

[
veca(Γ′Γ− IK )

vecb
(

1
T

∑
t f̂ t f̂

′
t − V ff

)]

where V ff = E
[
f tf

′
t

]
, meanwhile, veca(·) and vecb(·) vectorize

the upper triangular entries of a square matrix.
The Jacobian matrix J(Γ) as the derivative of the identification

function I (Γ) with respect to Γ: J(Γ) = ∂I (Γ)
∂Γ .



Formal result

Proposition

Under the above assumptions, mapping matrix estimation error
centered against the normalized true mapping matrix converges to
a normal distribution at the rate of

√
NT : as N,T → ∞ such that

T/N → ∞,

√
NT

(
γ̂ − γ0

) d−→ −
(
H0′H0 + J0

′
J0
)−1

H0′Normal(0,V[1])

where H0 := ∂S(Γ)
∂γ |γ=γ0 and J0 := ∂I (Γ)

∂γ |γ=γ0 ,

V[1] =
(
Q0 ⊗ IK

)
Ωxϵf

(
Q0′ ⊗ IK

)
, and Q0 := Qt(Γ

0) given that

Qt(Γ) := IL − Ωxx
t (Γ′Ωxx

t Γ)−1 Γ′ is constant over t under the
normality assumption.
Proof: refer to Kelly et al. (2020)



Formal result

Proposition
Under the Assumptions, factor estimation error centered against the normalized
true factor converges to a normal distribution at the rate of

√
N: as N,T → ∞

for ∀t, √
N
(
f̂ t − f

0
t

)
d−→ N

(
0,V[2]

t

)
,

Proof: Decompose the left-hand side equation:

√
N
(
f̂ t − f t

)
=

√
N

((
Γ̂′X ′

tXt Γ̂
)−1

Γ̂′X ′
t

(
Xt Γ̂f t + ϵ̃t

)
− f t

)
=

√
N

((
Γ̂′X ′

tXt Γ̂
)−1

Γ̂′X ′
t

(
Xt Γ̂f t

)
− f t

)
+

√
N
(
Γ̂′X ′

tXt Γ̂
)−1

Γ̂′X ′
t ϵ̃t

where ϵ̃t is the estimated error term with estimated Γ and true f t . Given

Proposition 1, Γ̂− Γ̂0 = Op

(
1/

√
NT
)
. The first term is simply Op

(
1/

√
NT
)
.

For the second term:

√
N
(
Γ̂′X ′

tXt Γ̂
)−1

Γ̂′X ′
t ϵt =

√
N
(
Γ′X ′

tXtΓ
)−1

Γ′X ′
t ϵt +Op(1)

d−→ Normal(0,V[2]
t )



Formal result

Theorem
Under Assumptions, the CSC-IPCA estimator E

(
ÂTT t |D,X , Γ,F

)
P−→ ATTt ,

where ATTt =
1

Ntreat

∑
i∈T δit is the true treatment effect. for all t > Tpre as

both Nctrl , Tpre → ∞.

Proof: Denote i as the treated unit on which the treatment effect is of
interest, the bias of estimated ATT is given by:

δ̂it − δit = y 1
it − ŷ 0

it − δit ,

= xitΓf
′
t − xit Γ̂f̂

′
t + ϵit ,

= xit
(
(IL ⊗ f t)γ − (IL ⊗ f̂ t)γ̂

)
+ ϵit ,

= xit ((IL ⊗ f t)γ − IL ⊗ (f t + e ft )(γ + eγ)) + ϵit ,

= xit ((IL ⊗ f t)eγ − (IL ⊗ e ftγ)− (IL ⊗ e ft )eγ) + ϵit

= xitEΓf
′
t − xitΓe

′
ft − xitEΓe

′
ft + ϵit ,

= A1,it + A2,it + A3,it + ϵit .

The third step converts the vector-matrix multiplication into vector
multiplications with the Kronecker product, x itΓf

′
t = x it(IL ⊗ f t)γ.



Formal result
The bias of the estimated ATT is the sum of four terms A1,it , A2,it , A3,it , and
ϵit . By proposition 1 and 2, we have the following results:

A1,it = x itEΓf
′
t = Op

(
1/
√

NtreatTpre

)
.

A2,it = −x itΓe
′
ft = Op

(
1/
√

Nctrl

)
.

A3,it = −x itEΓe
′
ft = Op

(
1/
√

NtreatTpreNctrl

)
.

Since we estimate the factor f t using only control units and update the
mapping matrix Γ with treated units in the pre-treatment period, both f t and Γ
converge over different dimensions of T and N. Consequently, the error term
ϵit is assumed to have zero mean, leading to the bias of the estimated ATT also
converging to zero:

δ̂it − δit = Op

(
1√

NtreatTpre

)
+Op

(
1√
Nctrl

)
+Op

(
1√

NtreatTpreNctrl

)
+Op(1)

= Op

(
1√
Nctrl

)
+Op

(
1√

NtreatTpre

)
.

Therefore, as Nctrl, Tpre → ∞, the estimated ATT converges to the true ATT:

E
(
ÂTT t |D,X , Γ,F

)
P−→ ATTt .



Case study – Brexit on FDI in the UK
▶ We use OECD countries as control units and the UK as the treated unit.

▶ The treatment period is from 2017, and the pre-treatment period is from
2016 to 1995.

▶ The outcome variable is the foreign direct investment (FDI) inflow.

▶ The covariates include GDP, imports and exports, inflation, investment,
employment, and demographic indicators.



Future Direction

▶ Solve overfitting.

▶ Better handle bad controls.

A GitHub repository contains not only the package to apply this
new method, but a Jupyter Notebook includes a step-by-step
demonstration of the estimation.

https://github.com/CongWang141/JMP

